

European Perspectives on Emerging Market Opportunities for Solar Heat to Decarbonize Industrial Processes

April 7th 2023

Pedro Dias, Policy Director

MEMBERS

MARKET SEGMENTS

Residential

Commercial

Industrial

District

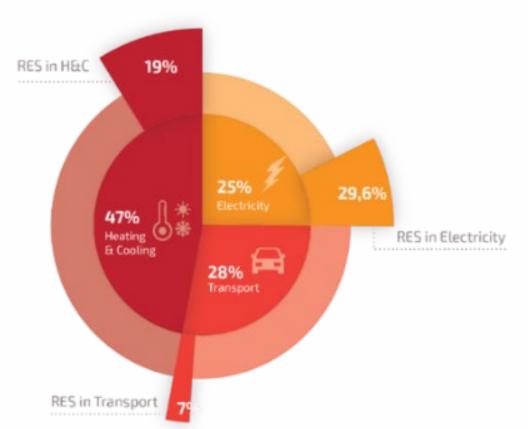
Topics on Solar Heat for Industrial Processes

Heat is Half!

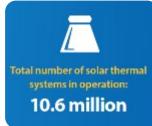
Solar Heat Technology

Solar heat market & projections

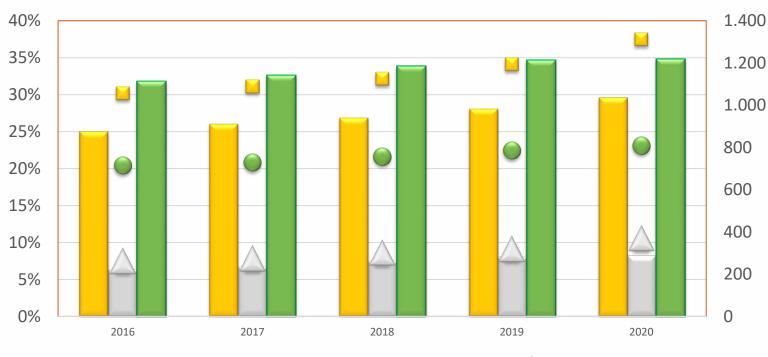
Solar Heat for Industrial Processes


Strategic net-zero industrial sector

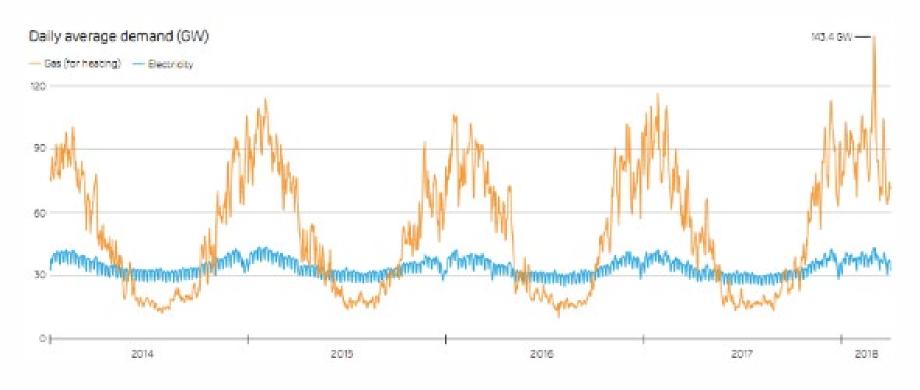
The ENERGY CRISIS is a HEATING Crisis.



#HeatIsHalf


10.6 million

#HeatIsHalf


Evolution of RES supply in Europe (TWh)

Renewable heat supply in EU is higher than renewable electricity generation.

Energy Demand: Heat vs. Electricity

Daily demand for gas and electricity over the last four years in the UK. Non-daily metered gas demand is shown (excluding power stations and heavy industry), as a proxy for domestic heat demand.

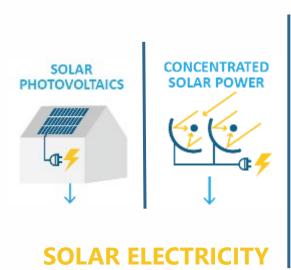
Source: postlmg.cc/Cdq7RXWG

Solar heat technology

What is solar heat?

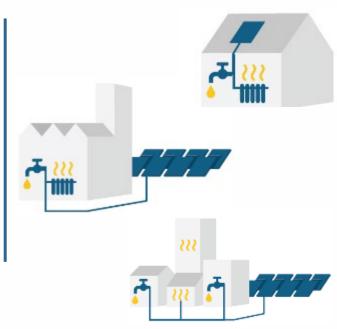
Market segments

Solar heat collectors/panels


Solar technologies

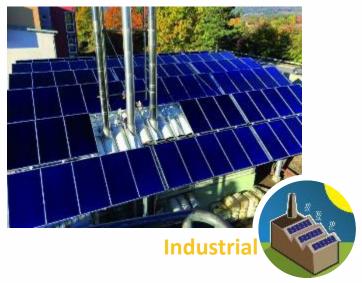
SOLAR POWER

SOLAR THERMAL


CONCENTRATED SOLAR THERMAL

NON-CONC. SOLAR THERMAL

SOLAR HEAT



Market segments

Solar Heat: types of panels/collectors

Non-concentrated Solar Heat

Flat Plate (with single-axis tracker)

Evacuated Tube

High-Vacuum Flat Plate

Hybrid / PVT (Photovoltaic-Thermal)

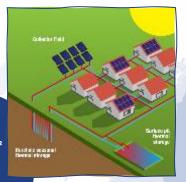
Solar Heat: types of panels/collectors

Concentrated Solar Heat

Parabolic (concentrated solar heat)

Linear fresnel (concentrated solar heat)

Fresnel lenses (concentrated solar heat)


Established solution looking into the future

Solar District Heating plant in Vojens, Denmark

Area collectors: 70 000 m²

Capacity: 37 MW

Seasonal thermal storage: 200 k m³ Covering 50% of heat demand

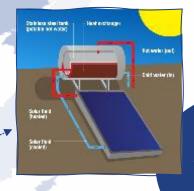
Solar Heat for Industrial
Processes (SHIP) plant in France

Clean heat for **malt production** factory, Boortmalt

Area collectors: 14 252 m²

Capacity: 10 MW

Thermal storage: 3k m³



Forced circulation solar thermal system for a household in Spain

Area collectors: 4 m2

Capacity: 2,8 kW_{th}

Thermal storage: 300 l / 22,5 kWh

Thermosiphon for a household in Greece

Area collectors: 2 m²

Capacity: 1,4 kW_{th}

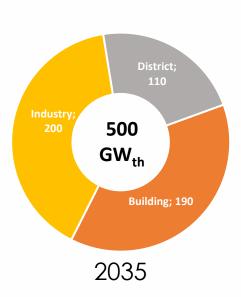
Thermal storage: 200 l / 15 kWh

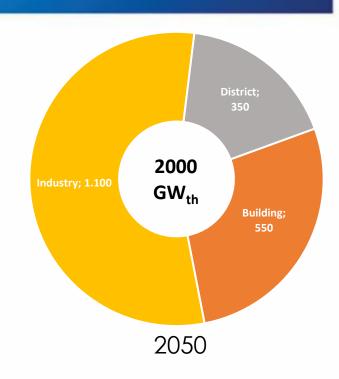
Solar heat market & projections

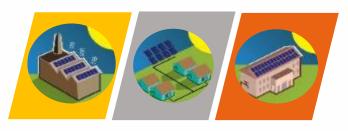
Current status

2030 - 2050

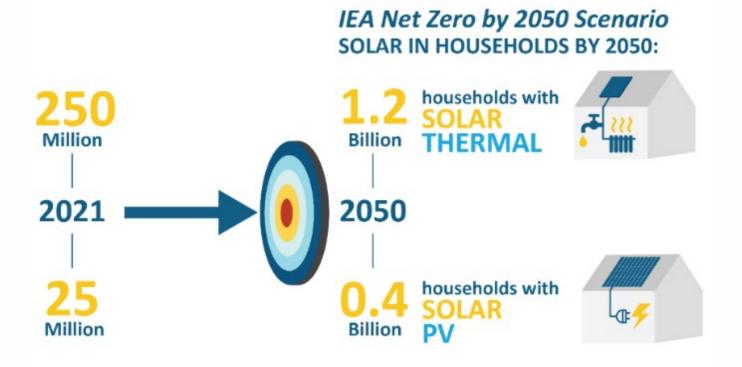
Other projections



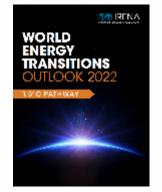

The solar heat market today



Solar heating & cooling by 2050

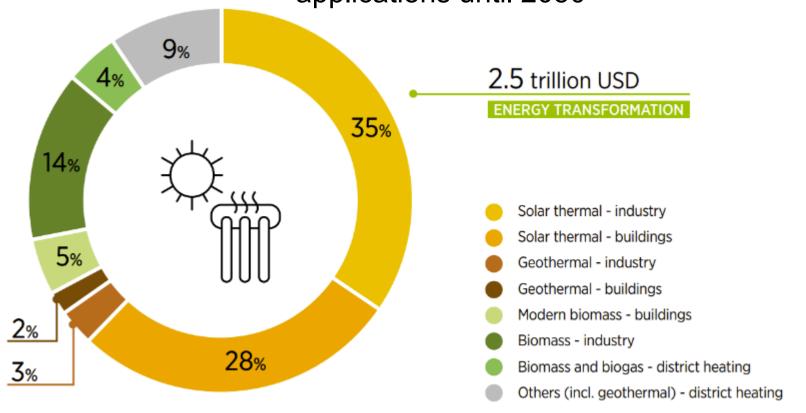


Solar heat in buildings by 2050



Solar heat in industry (SHIP)

Key Indicators	Historical	Where we need to be (1.5°C Scenario)		
	2019	2030	2050	
Biomass (incl. Feedstocks) (EJ) - Industry	9.2 ₺	25 E	36 EJ	
Solar thermal consumption (TWh _{th}) – Industry	4 TWh _s	890 TWh _{th}	1 291 TWh _{th}	
Solar thermal collector area (million m²) – Industry	5 mio m²	1 272 mio m²	1844 mio m ²	


> factor 300

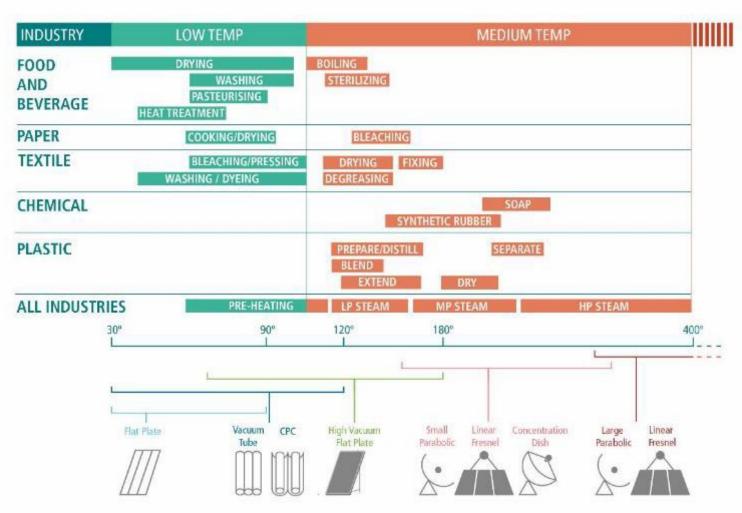
Solar heat potential by IRENA

Cumulative renewable energy investments needed for direct end-uses and heat applications until 2050

Source: IRENA analysis.

Solar Heat for Industrial Processes

SHIP integration


Costs: estimation, evolution

SHIP trends

Examples of medium temperature SHIP

SHIP integration: temperature ranges

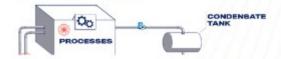
© TVP Solar 21

SHIP Integration: example

EASY SOLAR HEAT INTEGRATION To existing heating systems CONDENSATE TANK **PROCESSES** make-up water low pressure DEAERATOR BOILER feed water **ECONOMIZER** © Absolicon

SHIP integration: solar field

Future cost of heat powered by solar


Your heat cost powered by solar will be 43.36 €/MWh for the next 15 years

Your heat cost powered by solar will be 28.35 €/MWh for the next 25 years

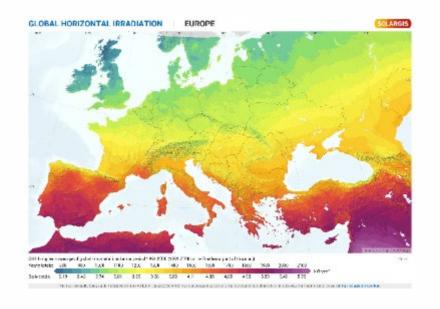
With Absolicon T160 Solar Collectors you can be competitive and lower CO2 emissions at the same time. There are several ways to integrate solar to your industry:

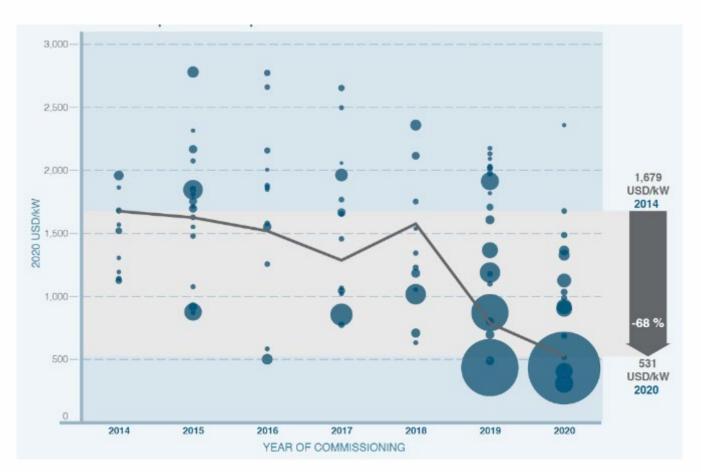
EASY SOLAR HEAT INTEGRATION


To existing heating systems

Field Simulator (Absolicon)

SHIP Cost: LCoH for in Europe

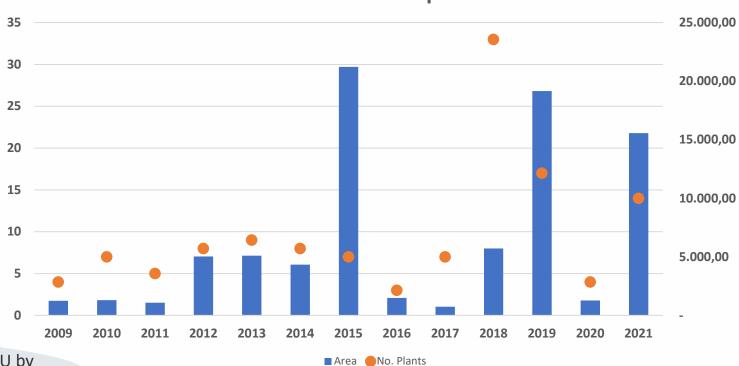



SHIP costs: Irradiance/temperature

							(made)	1000	Source: TVP Solar
	IRRADIANCE	1100	1300	1500	1700	1900	2100	2200	kWh/m²/year
Tm	@80°	3.9	3.1	2.7	2.3	2.1	1.8	1.8	c€/kWh
Tm	@100°	5.1	3.7	3.1	2.6	2.4	2.0	1.9	c€/kWh
Tm	@120°	6.4	4.3	3.4	2.9	2.6	2.1	2.1	c€/kWh
Tm	@150°	8.6	5.7	4.5	3.7	3.2	2.6	2.5	c€/kWh

SHIP Cost evolution

In 2014, the weighted-average installed costs of 11 Solar Heat for Industrial Processes (SHIP) projects were 1 679 USD/kW, while the average of 15 plants commissioned in 2020 dropped to 531 USD/kW, a decrease of 68%.



Source: Cost Trends of Solar Energy for Heat in Industry, Solar Payback 2021

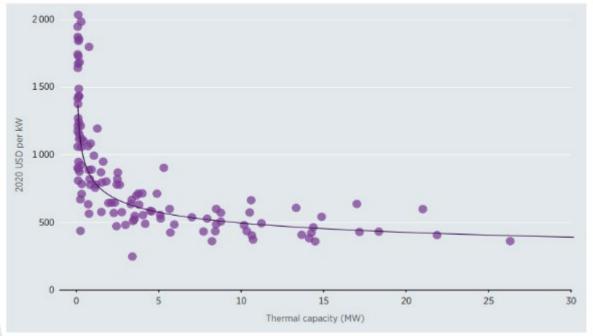
Trends: new SHIP systems in EU

Evolution of new SHIP plants in EU

Total 0 installed capacity in EU by the end of 2022 estimated to be

above 100 MW_{th}

9% of


Trends: Scale of SHIP plants in in EU

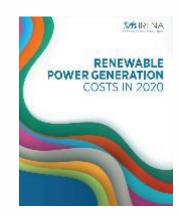


Figure 9.3 Total installed costs for district heating projects by installed capacity in Europe, 2010-2020

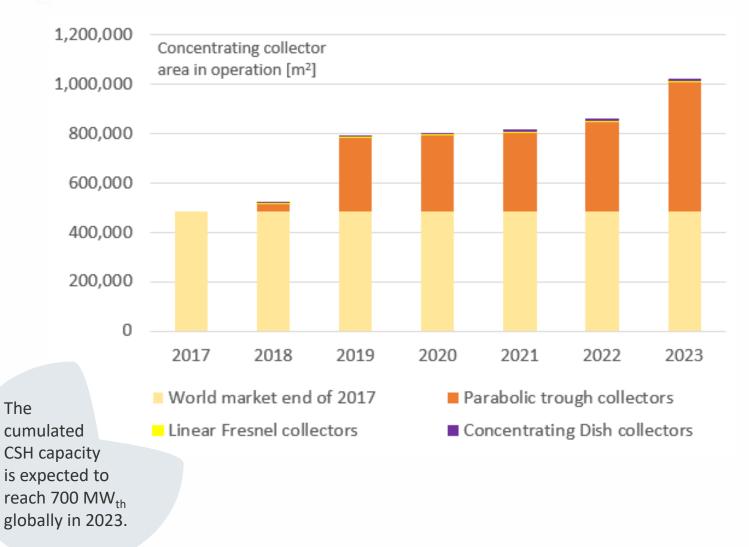
Larger solar heat plants provide clear economies of scale, with clear results above 3 MW_{th}. Note: example from SDH.

June 2019, France: Condat paper mill, 4 200 m² (3.4 MW_{th}) tracked flat plate collectors

April 2020, the Netherlands: 15 000 m² (10 MW_{th}) flat plate collectors supply heat to freesias greenhouse farm

Trends: Larger SHIP Plants

September 2021, France: Malting Plant, 14 200 m^2 (10 MW_{th}), flat plate collectors



Croatia: 29 000 m² (20 MW_{th}) flat plate collectors for malting plant (under development)

Spain: 43 400 m² (30 MW_{th}), parabolic trough collectors for brewery (HPA contract signed)

Trends: CSH pants globally (cumulative)

Greece

In operation since	1999	
Process Temperature	7-45 °C	
Power	1,89 MWth	
Collector area	2 700 m²	
Purpose	Warehouse cooling	
Collector type	Flat Plate	
Heat Storage Size	66 m ³	
CO₂ savings	5 125 t/a	
Solar plant operator	Sarantis S.A.	
Specific investment costs per m2 of collector area	484 €/m²	
Other emissions saved	SO ₂ , CO, Nox, HC, Particles	

Source: S.O.L.E.

Limassol, Cyprus

Solar circuit temperature	250 °C
Pressure	6 bar (Silicat oil)
Power	1 MWth
Aperture area	1 500 m ²
Collector type	Parabolic trough
Payback time	3,3 years
CO2 savings	700 t/a
Gas savings	€ 165 000
Conventional steam cost	50 €/t
Solar steam cost	10 €/t
Solar plant operator	KEAN Juice Co.

Source: ProTarget

Baotou, Inner Mongolia, China

Solar circuit temperature	220 °C
Aperture area (ground-mounted)	71 000 m²
Aperture area (rooftop)	22 000 m²
In operation since	October 2016 and June 2017
Heat transfer medium	Thermal oil
Total tank volume for both solar fields	66 000 m³
Type of storage	14 steel tanks
Maximum tank water temperature	95 °C

Source: Solarthermalworld.org; XuChen,2020

Baotou, Inner Mongolia, China

Estimated annual solar yield	83 GWh
Specific solar yield	887 kWh/m² (aperture area)
Backup system	Gas and electric boilers
Solar plant operator	XuChen Energy
Total amount invested (including storage, installation and heat network)	RMB 0.55 billion (USD 81.05 million)
Specific investment costs per m2 of aperture area (including heat network)	872 USD/m²

Source: Solarthermalworld.org; XuChen,2020

Ras Al Khaimah, United Arab Emirates

Solar circuit temperature	180 °C
Pressure	6 bar
Medium	Silicat oil
Power	1 MWth
Aperture area	1 500 m²
Land area	500 m²
Collector type	High-vacuum flat plate
Specific solar yield	668 kWh/m² (aperture area)
Solar steam cost (average)	35 USD/MW _{th}
Solar steam cost (range winter/summer)	29- 40 USD/MW _{th}
Solar plant operator	Ocean Rubber Factory

Source: TVP Solar

Maputo, Mozambique

Solar circuit temperature	160°C
Pressure	8 bar
Power	1 MWth
Aperture area	7 920 m²
Collector type	Parabolic trough
Estimated annual solar yield	6,3 GWh
Process temperature	120 °C
Heat Storage Size	1 660 m³
Heat Storage Pressure	1 bar
Solar plant operator	AB InBev

Source: Absolicon

Izmir, Turkey

Solar circuit temperature	180 °C
Pressure	10 bar
Power	3,5 MWth
Aperture area	4 500 m ²
Collector type	Parabolic trough
Solar plant operator	Mayr-Melnhof Graphia

Source: Solar Thermal World

Rooftop Concentrated Solar Heat

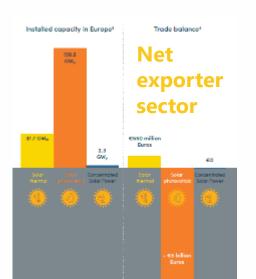
In operation since	2021	
Process Temperature	107 °C	
Power	184 kWth	
Collector area	2 64 m²	
Energy Generation	163 MWh	
Collector type	Parabolic Trough	
Purpose	Fabric Softener reactor	
Solar plant operator	Colgate-Palmolive	
Location	Athens, Greece	

Source: Colgate-Palmolive

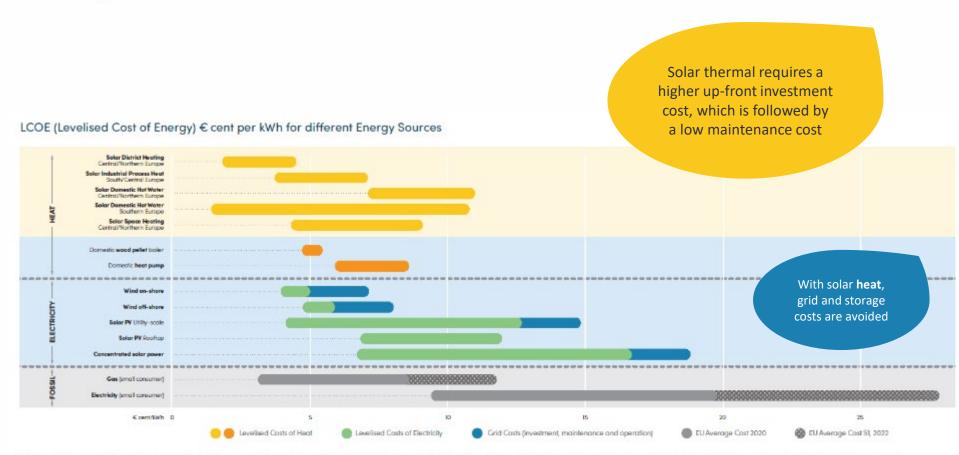
Strategic net-zero industrial sector

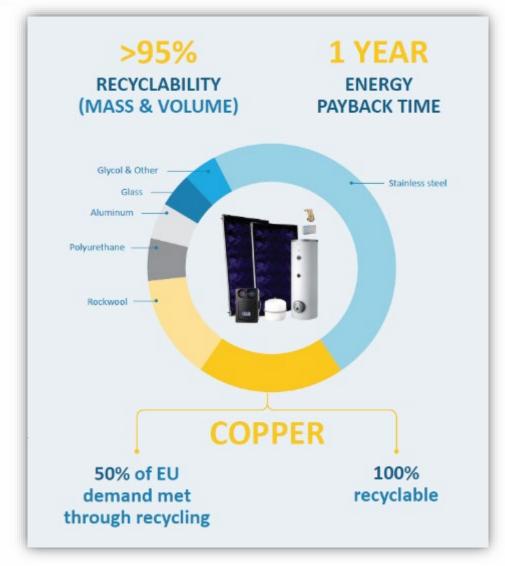
Made in Europe

Competitive & sustainable

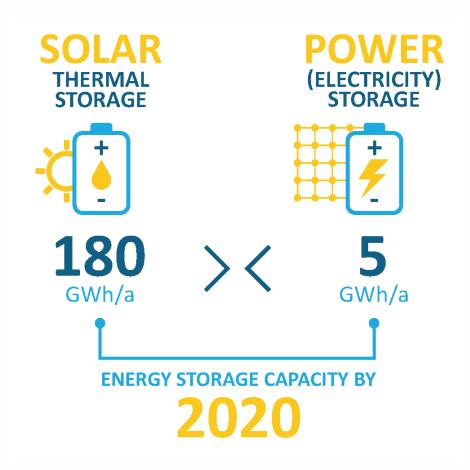

Policy and regulatory needs

Made in Europe




Solar heat costs

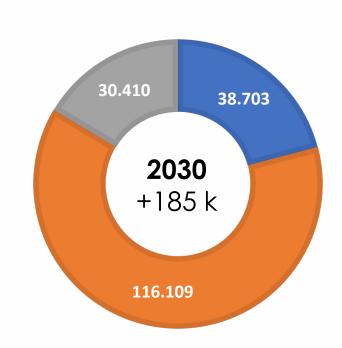
Sources: Eurostat; Trinomics Report for the European Commission; IEA-SHC: IEA-SHC task 52, Classification and Benchmarking; Solar Heat Worldwide 2018; Energy Visualisation Portal (europa.eu)



Solar heat is sustainable, promoting circularity and EU based supply

More than 20 million
EU citizens already
benefit from energy
storage, a default
element of their solar
heat installation.

Green Deal Industrial Plan



- Solar thermal recognised as a Strategic Net Zero Technology
- Priority to preserve and enlarge the existing manufacturing capacity
- Strengthen the competitiveness of the EU solar heat industry

Skilled Workforce

- Training, qualification and certification based on a modular approach
- Installers' portfolio with several decentralised RES
- Cooperation between industry and public authorities
- Start <u>immediately training experts</u> for local authorities and technical offices

■ Manufacturing ■ Instalation ■ Maintenance & other

Research & Innovation

Innovative technologies

- Inclusion of renewable heating & cooling in the SET plan
- Stronger investment in R&I at different TRL levels
- Re-purposing of the Implementation
 Working Group on CST to cover also
 non-concentrating solar thermal

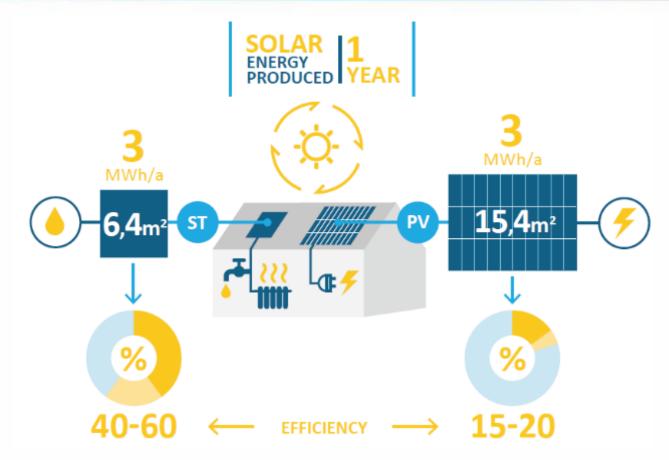
Full project implementation: Solar Heat for Industrial Processes (20 MW_{th}): <u>28 months</u>

Permitting: 24 months

Go-to Areas in urban spaces

... artificial and built
surfaces, such as rooftops,
transport infrastructure areas,
parking areas, waste sites,
industrial sites, mines,
artificial inland water bodies,
lakes or reservoirs, and,
where appropriate, urban
waste water treatment sites, as
well as degraded land not
usable for agriculture ...

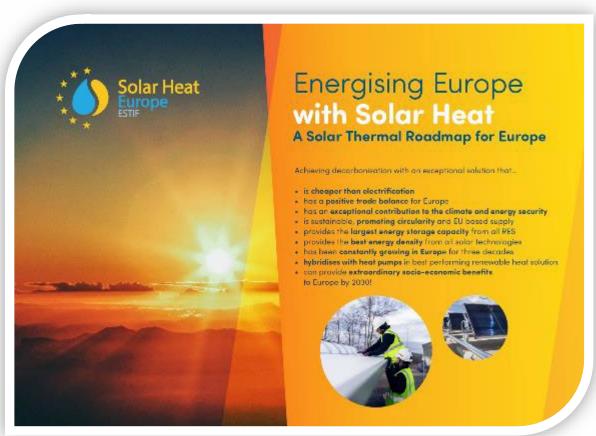
National implementation of FitFor55


- Target for renewables in industry
- NECPs fit for purpose
- Capacity building and skills
- Demonstration projects

SHIP2FAIR, SHIP plant, demonstration project for Martini & Rossi by TVP Solar

 Monitor implementation at Member State level to ensure a level playing field among solar technologies

Heat is half, let's solarise heat!



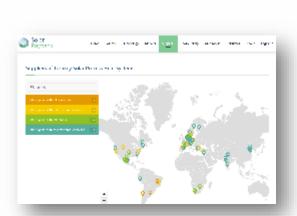
- Clean & direct renewable heat generation
- European-based industry, locally based, net exporter
- Reduces carbon emissions
- Increases energy security and independence

- Over 100 MWth of SHIP Plants inEU
- Exceptional thermal energy storage provided
- Can be combined with any other technology
- Competitive solution for the decarbonization of industrial processes

Energising Europe with Solar Heat

#SolariseHeat

solariseheat.eu



SHIP resources

Solar-Payback.com

Ship-Plants.info

Task64.IEA-SHC.org

ren21.net/gsr-2023

Contact us!

Pedro Dias

Policy Director

Tel: +32 498 111 974

pedro.dias@solarheateurope.eu

Alexandra Şuţu

Communications & Events Manager

Tel: +32 474 94 09 81

alexandra.sutu@solarheateurope.eu

Solar Heat Europe/ESTIF

Place du Champ de Mars 2, B-1050 Brussels, Belgium http://www.SolarHeatEurope.eu

We are energising Europe with Solar Heat!

