

# CEPI/ESF

28 January 2022, web meeting

Pedro Dias, Secretary General



## **Topics on Solar Heat** for Industrial **Processes:** focus on medium temperature applications

**SHIP temperature ranges** 

Requirements: area, location, orientation

Costs: estimation, evolution

**Examples of medium temperature SHIP** 



#### What is Solar Heat Europe







newHeat solar heat generation for industrial applications































SAVOSOLAR

























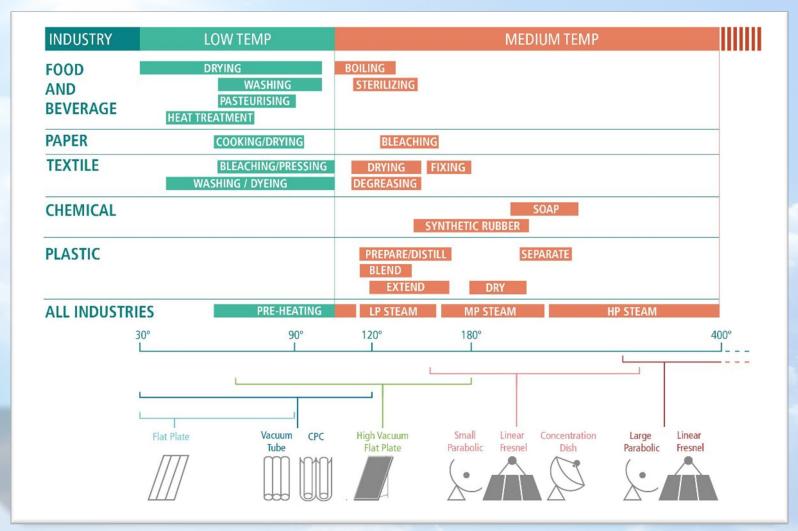






## **Topics on Solar Heat** for Industrial **Processes:** focus on medium temperature applications

**SHIP temperature ranges** 


Requirements: area, location, orientation

Costs: estimation, evolution

**Examples of medium temperature SHIP** 



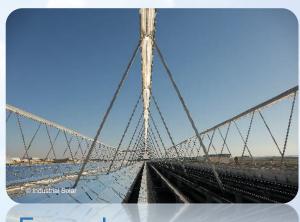
#### Temperature ranges





#### Solar Panel/Collector types




Flat Plate (with single-axis tracker)

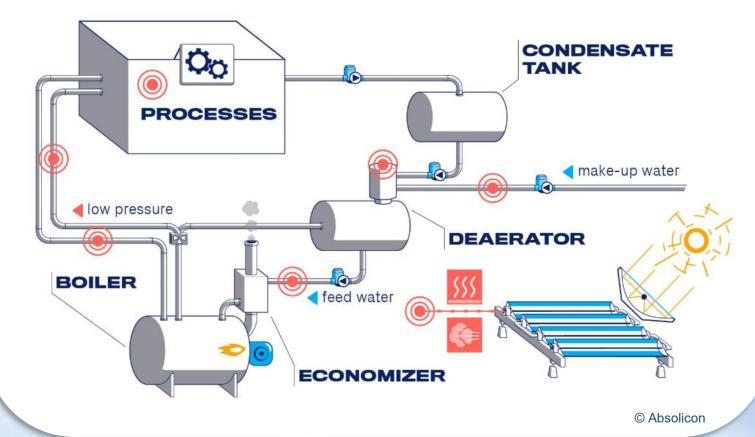


Parabolic (concentrated solar heat)








Fresnel (concentrated solar heat)



#### Solar Heat for Industrial Process (SHIP)

#### **EASY SOLAR HEAT INTEGRATION**

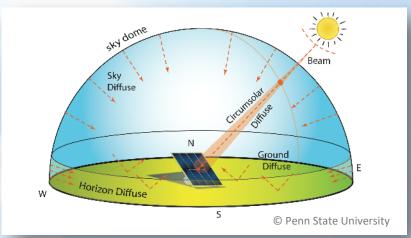
To existing heating systems

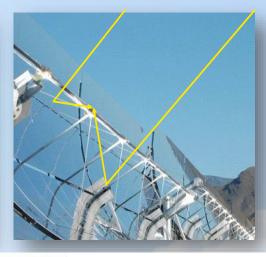


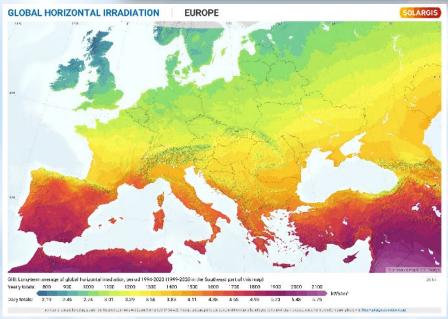


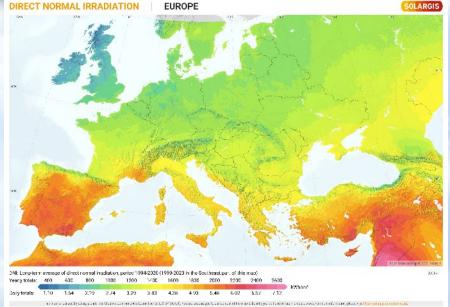
**Topics on Solar Heat** for Industrial **Processes:** focus on medium temperature applications

SHIP temperature ranges


Requirements: area, location, orientation

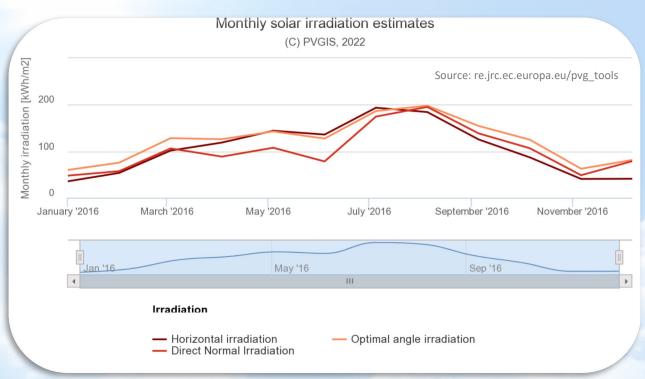

Costs: estimation, evolution


**Examples of medium temperature SHIP** 




## Location, orientation












### Location, orientation





#### Area requirements

- Rule of Thumb:
  - Parabolic Trough:
    - 2,5 times the collector apert. area
    - 1t steam ~ 0,5 ha open area



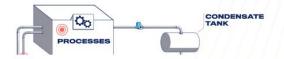




#### Area requirements



## Future cost of heat powered by solar


Your heat cost powered by solar will be **43.36** €/MWh for the next 15 years

Your heat cost powered by solar will be 28.35 €/MWh for the next 25 years

With Absolicon T160 Solar Collectors you can be competitive and lower CO2 emissions at the same time. There are several ways to integrate solar to your industry:

#### **EASY SOLAR HEAT INTEGRATION**

To existing heating systems

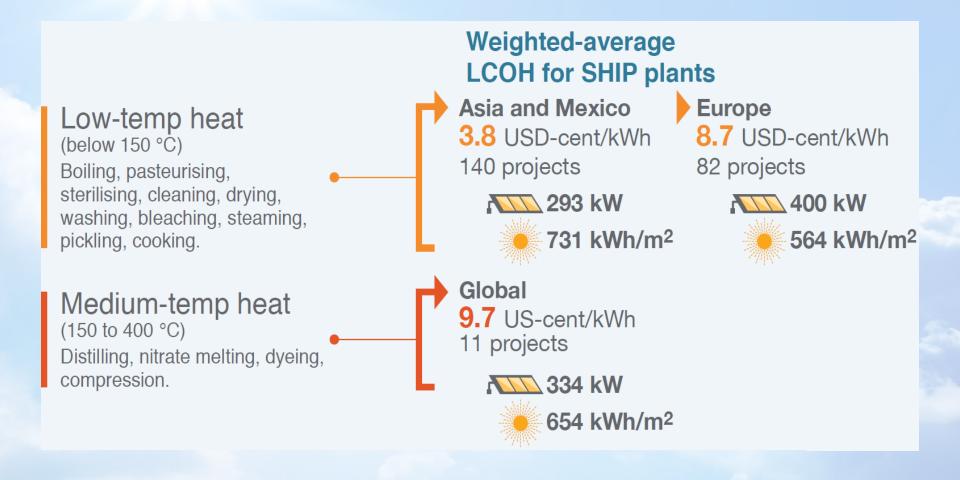


Field Simulator (Absolicon)



**Topics on Solar Heat** for Industrial **Processes:** focus on medium temperature applications

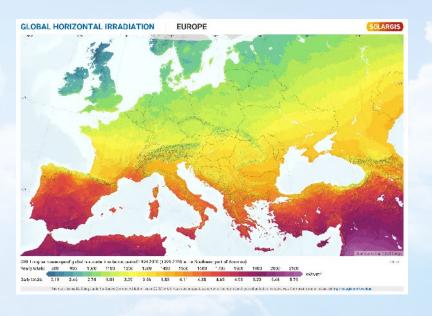
SHIP temperature ranges


Requirements: area, location, orientation

Costs: estimation, evolution

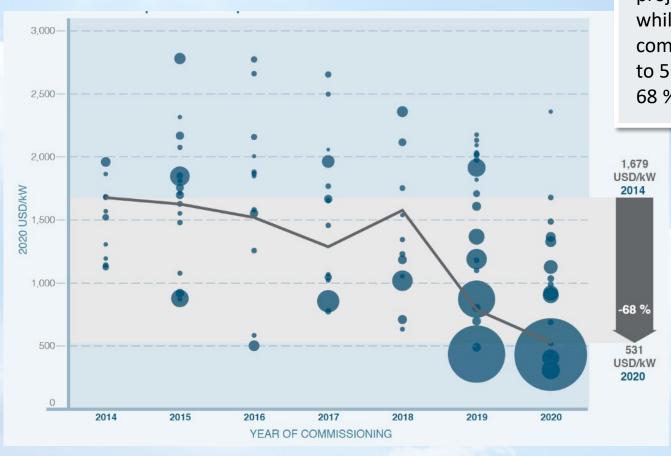
**Examples of medium temperature SHIP** 




#### Cost estimation for SHIP






### Cost estimation for SHIP

|    |            |      | Manager |      | - 1988 |      | Character ( |      | Source: TVP Solar |
|----|------------|------|---------|------|--------|------|-------------|------|-------------------|
|    | IRRADIANCE | 1100 | 1300    | 1500 | 1700   | 1900 | 2100        | 2200 | kWh/m²/year       |
| Tm | @80°       | 3.9  | 3.1     | 2.7  | 2.3    | 2.1  | 1.8         | 1.8  | c€/kWh            |
| Tm | @100°      | 5.1  | 3.7     | 3.1  | 2.6    | 2.4  | 2.0         | 1.9  | c€/kWh            |
| Tm | @120°      | 6.4  | 4.3     | 3.4  | 2.9    | 2.6  | 2.1         | 2.1  | c€/kWh            |
| Tm | @150°      | 8.6  | 5.7     | 4.5  | 3.7    | 3.2  | 2.6         | 2.5  | c€/kWh            |





#### Cost reduction in SHIP



In 2014, the weighted-average installed costs of 11 SHIP projects were 1 679 USD/kW, while the average of 15 plants commissioned in 2020 dropped to 531 USD/kW, a decrease of 68 %.



Source: Cost Trends of Solar Energy for Heat in Industry, Solar Payback 2021



#### Cost estimation for SHIP

Energy costs/year

Without solar heat 13,856,493 €

Energy consumption/year

Without solar heat 27,712,986 m³

With solar heat **13,045,827 €** 

Savings **810,666 €** 

Savings in total with a lifetime of 25 years **32,341,455** €

With solar heat **26,091,654 m³** 

Savings **1,621,332 m³** 

Percentage energy saving (gas) **5%**  **Investment:** 7,638,132 € Return on investment 17.19

**Savings:** 32,341,455 € with a lifetime of 25+ years

Capital value: 4,868,691 € Levelized cost of energy (LCOE): 3.2 Cent/kWhth

CO<sub>3</sub> saving per year: 3,115 t

CO<sub>3</sub> saving after 25 years' operation: 77,875 t

Source: Solarlite CSP





**Topics on Solar Heat** for Industrial **Processes:** focus on medium temperature applications

**SHIP temperature ranges** 

Requirements: area, location, orientation

Costs: estimation, evolution

**Examples of medium temperature SHIP** 



## Limassol, Cyprus

| Solar circuit temperature | 250 °C               |  |
|---------------------------|----------------------|--|
| Pressure                  | 6 bar (Silicat oil)  |  |
| Power                     | 1 MWth               |  |
| Aperture area             | 1 500 m <sup>2</sup> |  |
| Collector type            | Parabolic trough     |  |
| Payback time              | 3,3 years            |  |
| CO2 savings               | 700 t/a              |  |
| Gas savings               | € 165 000            |  |
| Conventional steam cost   | 50 €/t               |  |
| Solar steam cost          | 10 €/t               |  |
| Solar plant operator      | KEAN Juice Co.       |  |



Source: ProTarget



## Belgium

|                           | Antwerp               | Oostende         |  |
|---------------------------|-----------------------|------------------|--|
| Solar circuit temperature | 330 °C                | 330 °C           |  |
| Pressure                  | <b>10</b> bar         | 10 bar           |  |
| Medium                    | Silicat oil           | Silicat oil      |  |
| Power                     | 0,5 MWth              | 0,5 MWth         |  |
| Aperture area             | 1 100 m²              | 1 100 m²         |  |
| Process temperature       | 180 °C                | 175 °C           |  |
| Collector type            | Parabolic trough      | Parabolic trough |  |
| Solar plant operator      | ADPO, Antwerp harbour | PROVIRON         |  |
|                           | Antwerp               | Oostende         |  |
| Solar circuit temperature | 330 °C                | 330 °C           |  |






Source: Solarlite CSP Technology GmbH



## Maputo, Mozambique

| Solar circuit temperature    | 160°C                |
|------------------------------|----------------------|
| Pressure                     | 8 bar                |
| Power                        | 1 MWth               |
| Aperture area                | 7 920 m²             |
| Collector type               | Parabolic trough     |
| Estimated annual solar yield | 6,3 GWh              |
| Process temperature          | 120 °C               |
| Heat Storage Size            | 1 660 m <sup>3</sup> |
| Heat Storage Pressure        | 1 bar                |
| Solar plant operator         | AB InBev             |



Source: Absolicon



### Baotou, Inner Mongolia, China

| Solar circuit temperature               | 220 °C                     |
|-----------------------------------------|----------------------------|
| Aperture area (ground-mounted)          | 71 000 m²                  |
| Aperture area (rooftop)                 | 22 000 m²                  |
| In operation since                      | October 2016 and June 2017 |
| Heat transfer medium                    | Thermal oil                |
| Total tank volume for both solar fields | 66 000 m³                  |
| Type of storage                         | 14 steel tanks             |
| Maximum tank water temperature          | 95 °C                      |



Source: Solarthermalworld.org; XuChen,2020



### Baotou, Inner Mongolia, China

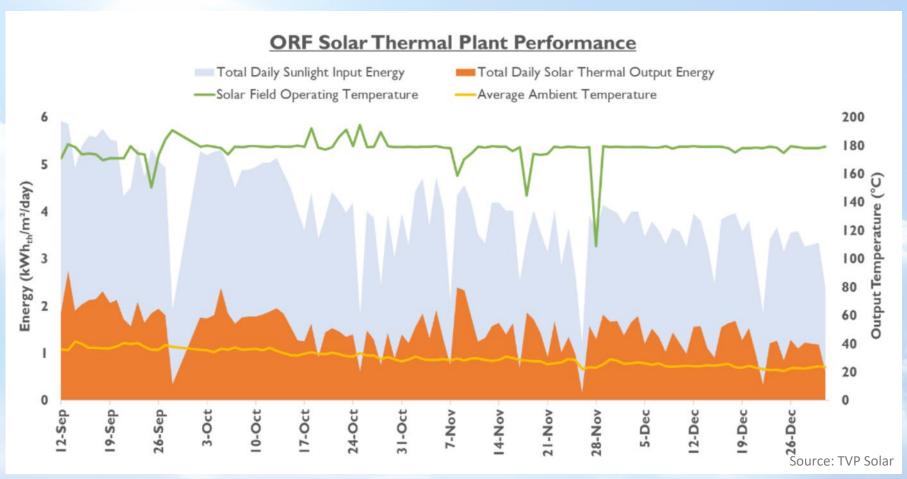


| Estimated annual solar yield                                                   | 83 GWh                               |
|--------------------------------------------------------------------------------|--------------------------------------|
| Specific solar yield                                                           | 887 kWh/m²<br>(aperture area)        |
| Backup system                                                                  | Gas and electric boilers             |
| Solar plant operator                                                           | XuChen Energy                        |
| Total amount invested<br>(including storage, installation and heat<br>network) | RMB 0.55 billion (USD 81.05 million) |
| Specific investment costs per m2  of aperture area  (including heat network)   | 872 USD/m²                           |

Source: Solarthermalworld.org; XuChen,2020



### Ras Al Khaimah, United Arab Emirates


| Solar circuit temperature              | 180 °C                        |
|----------------------------------------|-------------------------------|
| Pressure                               | 6 bar                         |
| Medium                                 | Silicat oil                   |
| Power                                  | 1 MWth                        |
| Aperture area                          | 1 500 m²                      |
| Land area                              | <b>500</b> m²                 |
| Collector type                         | Parabolic trough              |
| Specific solar yield                   | 668 kWh/m²<br>(aperture area) |
| Solar steam cost (average)             | 35 USD/MW <sub>th</sub>       |
| Solar steam cost (range winter/summer) | 29- 40 USD/MW <sub>th</sub>   |
| Solar plant operator                   | Ocean Rubber Factory          |



Source: TVP Solar



#### Ras Al Khaimah, United Arab Emirates





### Greece

| In operation since                                 | 1999                                     |
|----------------------------------------------------|------------------------------------------|
| Process Temperature                                | 7-45 °C                                  |
| Power                                              | 1,89 MWth                                |
| Collector area                                     | 2 700 m²                                 |
| Purpose                                            | Warehouse cooling                        |
| Collector type                                     | Flat Plate                               |
| Heat Storage Size                                  | 66 m <sup>3</sup>                        |
| CO <sub>2</sub> savings                            | 5 125 t/a                                |
| Solar plant operator                               | Sarantis S.A.                            |
| Specific investment costs per m2 of collector area | 484 €/m²                                 |
| Other emissions saved                              | SO <sub>2</sub> , CO, Nox, HC, Particles |
|                                                    |                                          |



Source: S.O.L.E.





## Pedro Dias

**Secretary General** 

Tel: +32 2 318 40 60

Pedro.Dias@SolarHeatEurope.eu

#### **Solar Heat Europe/ESTIF**

Place du Champ de Mars 2, B-1050 Brussels, Belgium www.SolarHeatEurope.eu